ALJAN CO.

Physicians Desk Reference

INTRODUCTION

INTRODUCTION

The Aljan Company has been improving the lives of people impacted by movement and limb disabilities since the 1960's. Over the last 60 years, Aljan has evolved into a leader of complete prosthetic and orthotic care.

Our mission is to continue to provide compassionate care to individuals that require artificial limb and bracing solutions. We look forward to carrying on the Aljan name and its legacy of serving the greater Madison area.

INTRODUCTION

WHY ALJAN?

A local team built to deliver the comprehensive scope of orthotic and prosthetic services

- 3 Madison-Area Locations
- 8 North-Central WI Partner Locations
- Contracted with Virtually All Insurances and Medicare/ Medicaid
 - Consultations and Evaluations are Free Of Charge
- All Patients are Seen by a Board Ceritfied Practitioner

It is Aljan's primary objective to prvoide quality and comprehensive Orthotic and Prosthetic services to the people of Madison in a timely, cost effective, and compassionate manner.

JUST ASK...

This prosthetic and orthotic product guide is intended to be used only as a reference. While comprehensive in scope, every product currently on the market could not be included.

Additionally, because technology is constantly evolving, the products shown are subject to change.

If there is a specific product or design that you may have in mind, please contact Aljan and a Board Certified Practitioner will be able to assist in providing a product that would fit the patient's current needs.

Upon the patient's free evaluation, we will contact the patient's insurance for coverage of the requested items.

Our services include but are not limited to:

Lower extremity bracing

Upper extremity bracing

Spinal/Neck/Back bracing

Geriatric

Pediatric

Sports medicine

Trauma

Orthopedic shoes and inserts

Diabetic care

Prosthetic care

ORTHOTICS SECTIONS

<u>Orthosis</u>	Page
Spinal Orthoses	7
Lower Extremity Orthoses	23
Pediatric Orthoses	49
Upper Extremity Orthoses	63

SPINAL ORTHOTICS

Orthosis Page Soft Cervical Collar......8 Philadelphia Collar......8 Miami-J Collar......9 Aspen Vista/Aspen Collar9 Miami Collar with Extension (CTO)......10 Minerva (CTO)11 SOMI......11 Halo......12 TLSO (chairback/corset)......13 Low-profile TLSO/High-profile LSO......14 TLSO with Sternal Attachment14 Postural Kyphosis Support......15 CASH (Hyperextension orthosis)......15 Jewett (Hyperextension orthosis)16 TLSO (bivalve)......16 Soft TLSO (bivalve)17 Lumbosacral Corset......18

Phone: (608) 257-4256 Fax: (608) 257-7220

SOFT CERVICAL COLLAR

Design

- Offer support and some limitations of flexion, extension, lateral bending

DX

- Mild cervical pain
- Sprain/strain
- Whiplash
- Muscular weakness

PHILADELPHIA COLLAR

Design

- Restricts flexion, extension, lateral bending
- Latex free, nontoxic, hypoallergenic

- Post-operative stabilization
- Stable cervical fracture
- Degenerative pathologies

WATER-RESISTANT, CAN BE USED IN THE SHOWER AND AQUATIC THERAPY

MIAMI-J COLLAR

Design

- Rigid two-piece/bivalve cervical collar
- Restricts flexion, extension, lateral bending
- X-ray, CT and MRI compatible
- Removable inner lining can be washed and replaced

ASPEN/ASPEN VISTA COLLAR

Design

- Rigid two-piece/bivalve cervical collar
- Restricts flexion, extension, lateral bending
- X-ray, CT and MRI compatible
- Removable inner lining can be washed and replaced

MIAMI COLLAR WITH EXTENSION

Cervical Thoracic Orthosis

Design

- Restricts flexion, extension, lateral bending
- X-ray, CT, MRI compatible
- Rigid Miami J with thoracic extension

DX

- High thoracic injuries
- Stable Fx
- Post-op stabilization
- Degenerative pathologies

ASPEN CERVICAL-THORACIC STABILIZER

Cervical Thoracic Orthosis

Design

- Restricts forward flexion and extensic
- Reduces lateral bending
- X-ray, CT, MRI compatible
- Rigid Aspen vista with thoracic extension

- High thoracic injuries
- Stable Fracture
- Post-op stabilization
- Degenerative pathologies

- Telescoping hinges
 - Quick disconnect strapping
- Set of replacement pads provided

SPINAL ORTHOSES

MINERVA ORTHOSIS

CERVICAL THORACIC ORTHOSIS

Design

- Two piece design restricts flexion, extension, lateral side bending
- Mandibular and occipital extensions modified to accommodate varying anatomical alignments

DX

- Low cervical/high thoracic fracture
- Stable fracture
- Post-operative stabilization
- Arthritis
- Degenerative pathologies

SOMI ORTHOSIS

STERNAL OCCIPITAL MANDIBULAR IMMOBILIZATION

Design

- Two piece design restricts flexion, extension, lateral side bending
- Mandibular and occipital extensions modified to accommodate varying anatomical alignments

- Low cervical/high thoracic fracture
- Stable fracture
- Post-operative stabilization
- Arthritis
- Degenerative pathologies

Anterior design allows supine donning/doffing

CTLSO

Design

- Custom-made to patient model or prefabricated
- Rigid plastic exterior shell with soft lining
- Closed cell foam does not absorb moisture and is water resistant
- Bivalve design with mandibular and Occipital extensions modified to accommodate varying anatomical alignment
- Custom-made to a patient model

HALO

Design

- Two piece thoracic vest
- Lambs wool liner
- CPR break for emergent issues
- MRI compatible

- Unstable cervical fracture
- Post operative stabilization

TLSO (CHAIRBACK/CORSET)

Design

- Chairback design provides more total contact/postural support
- Shoulder straps aid in postural support
- Low profile design aids to decrease pain and increase patient mobility

DX

- Thoracic and lumbar compression fracture
- Hyper-kyphosis
- Chronic low back pain
- Osteoarthritis

TLSO (CORSET)

Design

- Corset design
- Cotton and nylon designs
- Removable moldable metal stays
- Padded adjustable shoulder straps

- Thoracic and lumbar chronic low back pain
- Osteoarthritis

LOW-PROFILE TLSO/HIGH-PROFILE

Design

- Custom-made to patient model or prefabricated
- Extends from symphysis pubis to T-9/ xiphoid and SC Joint to inferior spine of the scapula
- Chairback/corset design

DX

- Wheelchair seating support
- Post-operative
- Cancer patients
- Muscular dystrophy
- Spina bifida
- Paraplegia

TLSO WITH STERNAL ATTACHMENT

Design

- Custom-made to patient model or prefabricated
- Extends from symphysis pubis to sternal notch and SC Joint to inferior spine of the scapula
- Chairback/corset design
- DX
 - Post-operative
 - Trauma

POSTURAL KYPHOSIS SUPPORT

Design

- Velcro closure
- Light weight
- Low profile
- Kinesthetic reminder to patients to strengthen core reducing effects of postural kyphosis

DX

- Postural Kyphosis

CASH ORTHOSIS

Cruciform Anterior Spinal Hyperextension

Design

- Hyperextension orthosis
- Triplanar control
- Rigid lateral/anterior frame

- Maintain therapeutic immobilization
- Reduce load on the anterior vertebral bodies (T7-L5)
- Reduces pain
- Provides protection

JEWETT ORTHOSIS

Design

- Hyperextension Orthosis
- Triplanar control
- Hyperextensions
- Rigid anterior and lateral frame

DX

- Maintain therapeutic immobilization
- Reduce load on the anterior vertebral bodies (T7 through L5)
- Reduce pain
- Provide protection

TLSO (BIVALVE)

Design

- Custom-made to patient model or prefabricated
- 2 piece plastic shell
- Lined with soft non-absorbent foam

- Post op surgery from T8 S1
- Trauma
- Degenerative pathologies
- Vertebral displacement
- Osteoporosis
- Stenosis/disc herniation
- Spondy's

SPINAL ORTHOSES

SOFT TLSO (BIVALVE)

Design

- Custom-made to patient model or prefabricated
- Less rigid than thermoplastic TLSO
- Provides less triplanar control/ immobilization

than Rigid TLSO

DX

- Wheelchair seating support
- Post-operative
- Cancer patients
- Cerebral palsy
- Muscular dystrophy
- Spina bifida
- Paraplegia
- Geriatric population
- Patients prone to bed sores

LSO (BIVALVE)

Design

- Custom-made to patient model or prefabricated
- Terminates from Xiphoid to symphysis pubis
- Soft foam hypoallergenic lined

D)

- Lumbar fracture management
- Post-operative
- Trauma
- Spinal Stenosis
- Degenerative pathologies

SOFT LSO (BIVALVE)

Design

- Custom-made to patient model or prefabricated
- Less control than thermoplastic LSO
- 2 piece plastic shell
- Lined with soft non-absorbant foam

DX

- Ankylosing spondylitis
- Lumbar stabilization
- Postural support
- Stenosis
- Geriatric population
- Patients prone to bed sores

LUMBOSACRAL CORSET

Design

- Washable material
- Removable metal stays
- Velcro hook
- Low profile design

- Low back pain
- Lumbar stenosis
- Post-op stabilization

POSTURAL SUPPORT

Mother-to-be- back support

Design

- Elastic material
- Heat moldable kydex material
- Provides lumbar postural support
- Reduced lordosis

DX

- Low back pain
- Spondy's obesity/pregnancy support
- Pain associated with lordotic angle
- Stenosis
- Nerve impingement

SI BELT

Sacroiliac support

- Design
 - Elastic support
 - Provides Sacroiliac stabilization

- Sacroiliac strains
- Arthritis
- Reduce Sacroiliac joint movement in hypermobile or weak patients
- Sciatica pain
- Hip pain

SPINAL DECOMPRESSION LSO

Design

- Pneumatic pump inflates air bladders elongating the spine and unloading vertebral discs
- Traction belt is vertically expanded by 7cm (2.8")

DX

- Herniated discs
- Stenosis
- Spondy's
- Low back pain
- Sciatica

LSO (CORSET/PULL CORD DESIGN)

Design

- Ease of donning/doffing
- Patients are usually very compliant
- Extends from L1-L5
- Produced intracavitary pressure
- Reduced load on intervertabral discs

- Herniated discs
- Low back pain
- Lumbar instabilities
- Spondy's
- Compression fracture
- Degenerative disc disease
- Post-op

SPINAL ORTHOSES

LSO (CHAIRBACK/CORSET PULL CORD DESIGN)

Design

- Chairback design provides more total contact/postural support
- Pull cord design is easy for the patient to donn/doff
- Patients usually very compliant with design

- Low back pain
- Lumbar stenosis
- Post-op
- Trauma
- Strains/sprains
- Spony's
- Disc herniation
- Degenerative disc disease

LOWER EXTREMITY ORTHOTICS

<u>Orthosis</u>	Pag
Foot Orthoses	
Functional Foot Orthotics	26
Accommodative Foot Orthotics	26
UCBL Foot Orthotics	27
Shoes and Cast Boots	
Healing Shoe	27
Pressure Relief Shoe/Boot	28
Custom-Off-The-Shelf Shoes	28
Walking Boot	29
Mid-Calf Walking Boot	29
Ankle Foot Orthoses (AFO)	
PRAFO	
Planter Fasciitis Night Splint	30
Lace-up Ankle Orthosis	31
Figure 8 Lace-up Ankle Orthosis	31
Air Stirrup Ankle Orthosis	32
Pre-Fab Articulated Ankle Orthosis	32
Articulated Ankle Orthosis	33
Molded Leather Ankle Gauntlet AFO	33
Pre-Fab Posterior Leaf Spring AFO	34
Carbon Eibar Dynamic AEO	2/

Phone: (608) 257-4256 Fax: (608) 257-7220

LOWER EXTREMITY ORTHOTICS

<u>Orthosis</u>	Page
-----------------	------

Ankle Foot Orthoses (AFO) Cont'd
Double Upright Metal AFO35
CROW Boot35
Posterior-Leaf Spring36
Semi-Solid AFO36
Solid Ankle AFO37
Articulated AFO37
Functional Neuromuscular Electrical Stim38
Fracture Orthoses
Patellar Tendon Bearing Orthosis
Femoral Fracture Orthosis
remoral fracture Orthosis
Contracture Orthoses
Contracture AFO40
Contracture KAFO40
Contracture Knee Orthosis41
Knee Orthosis
Knee Immobilizer41
Range-Of-Motion Knee Orthosis42
Patellar Stabilizing Knee Orthosis42
Prefab Framed Knee Orthosis43
Custom Framed Knee Orthosis43

LOWER EXTREMITY ORTHOTICS

<u>Orthosis</u> <u>Page</u>

Osteoarthritis (OA Knee Orthoses) Prefab Offloading Knee Orthosis	44
Custom Offloading Knee Orthosis	44
Single Upright Knee Orthosis	45
Knee-Ankle-Foot-Orthoses (KAFO)	
KAFO	45
Stance Control KAFO	46
Hip Orthoses	
Hip Orthoses	46
Hip-Knee-Ankle-Foot Orthosis (HKAFO)	
HKAFO	47
Reciprocating Gait Orthosis (RGO)	
RGO	47

ORTHOTICS LOWER EXTREMITY ORTHOSES

FUNCTIONAL FOOT ORTHOTICS

Design

- Fabricated in non, semi, and full weight bearing positions to achieve neutral or functional alignment (subtalar neutral alignment)
- Custom made to patient models
 - Multidensity
 - Rigid
 - Semi-rigid construction
- Various materials available
- DX
 - Biomechanical insufficiencies

ACCOMMODATIVE FOOT ORTHOT-

- Design
 - Multi-density semi-rigid
 - Custom made to a patient model
- DX
 - Diabetes
 - Vascular and sensory insufficiencies
 - Toe filler
 - Severe deformities

UCBL FOOT ORTHOSIS

University California-Berkley Laboratories Orthosis

Design

- Semi-rigid orthosis encompassing medial and lateral borders of calcaneous
- Usually fabricated from plastics
- Custom made to a patient model

DX

- Hyper-pronation
- Hypotonic patient
- Posterior tibial tendonitis dysfunction
- Tibial tendonitis

HEALING SHOE

Design

- Provides immobilization and offloading:
 - Forefoot
 - Metatarsals
 - Heel
- Can be custom modified for precise fit

- Stable Fx
- Ulcers
- Post-op management

ORTHOTICS LOWER EXTREMITY ORTHOSES

PRESSURE RELIEF SHOE/BOOT

- Design
 - Removable shock absorbing segments
 - Removable toe piece
 - Mesh upper
 - Velcro closure
- DX
 - Plantar surface ulcers
 - Skin breakdown
 - Irritation

CUSTOM/OFF-THE-SHELF SHOES

- Design
 - Shoes chosen based on patients foot presentation
 - Measure for length, width and depth
 - Casts taken semi-weight bearing for

custom

- DX
 - Severe deformities
 - Diabetic foot

ORTHOTICS LOWER EXTREMITY ORTHOSES

WALKING BOOT

Design

- Provides ankle and foot immobilization
- Plastic or aluminum uprights
- Solid or controlled ROM joints
- Pneumatic or static options

DX

- Stable Fx
- Post-op management
- Soft tissue injury (grade 2 or 3 sprain)

MID-CALF WALKING BOOT

Design

- Provides ankle and foot immobilization
- Plastic or aluminum uprights
- Solid or controlled ROM joints
- Pneumatic or static options

- Stable Fx
- Post-op management
- Soft tissue injury (grade 2 or 3 sprain)

ORTHOTICS LOWER EXTREMITY ORTHOSES

PRAFO

Pressure Relief AFO

Design

- Provides ankle immobilization and plantar flexion resistance
- Soft synthetic sheep skin liner can be washed and replaced
- Large area of relief for hindfoot/ calcaneous
- Posterior upright/bar resists external/internal rotation

DX

- Patients prone to bedsores
- Patients prone to contractures
- Derotational support

PLANTER FASCIITIS NIGHT SPLINT

Design

- Rigid posterior frame
- Soft foam lining
- Bilateral adjustable straps allow for variable dorsiflexion/plantarflexion settings

- Plantar fasciitis
- Tight gastroc-soleous complex
- Achilles tendon injuries

ORTHOTICS LOWER EXTREMITY ORTHOSES

LACE-UP ANKLE ORTHOSIS

Design

- Bilateral semi-rigid inserts provide additional Medio-lateral support
- Lace up design allows for increase stability
- Ease of donning

DX

- Medial and lateral ankle instability
- Sprains
- Subtalar irritation/pain

FIGURE 8 LACE-UP ANKLE ORTHOSIS

Design

- Ankle Surround Orthosis
- Ligamentus stability
- Often used in sports
- Provide additional medio-lateral support to ankle by incorporating stays and figure 8 strapping

- Medial and lateral ankle instability
- Sprains
- Subtalar irritation/pain

ORTHOTICS LOWER EXTREMITY ORTHOSES

AIR STIRRUP ANKLE ORTHOSIS

- Design
 - Pre-inflated air struts provide stability and patient comfort
- DX
 - Medial and lateral ankle instability
 - Sprains/strains

PRE-FABRICATED ARTICULATED ANKLE ORTHOSIS

- Design
 - Light
 - Low-profile
 - Medial/lateral stability
- Dx
 - Medial/lateral ankle instability

ORTHOTICS LOWER EXTREMITY ORTHOSES

ARTICULATED ANKLE ORTHOSIS

Articulated Supra-Maleollar Orthosis

Design

- Custom made to patient model
- UCBL style foot bed
- Variable ankle joints and design variation
 - Adjustable ROM
 - Free motion
 - Dorsi assist
- Plantar flexion stop

DX

- Pes planus
- Posterior tibial tendonitis dysfunction
- Hyper pronation
- Medial/lateral ankle instabilities
- Ankle and/or foot injuries

MOLDED LEATHER ANKLE GAUNTLET AFO

Design

- Custom-made to patient model
- Leather outer
- Plastic inner shell
- Available with lacer/velcro design

- Posterior tibial tendonitis dysfunction
- Pes planus
- Hyper-pronation
- Osteoarthritis

ORTHOTICS LOWER EXTREMITY ORTHOSES

PRE-FABRICATED POSTERIOR LEAF SPRING AFO

- Design
 - Thermoplastic custom-fit
 - Provides dorsiflexion assist during swing phase
- DX
 - Drop foot
 - Stroke
 - Multiple sclerosis
 - Peroneal palsy

CARBON FIBER DYNAMIC AFO

- Design
 - Custom-made and prefabricated designs
 - Available with medial, lateral or posterior struts
 - Anterior shell assist with knee extension
 - Posterior calf cuff available
 - Provides stability and energy return
 - Ultra-light weight
- DX
 - Drop foot
 - Stroke
 - Multiple sclerosis
 - Peroneal palsy

DOUBLE UPRIGHT METAL AFO

Design

- Custom-made to patient model
- Metal can be aluminum, stainless steel, titanium
- Molded leather calf cuff
- Ankle joints can vary
 - Full motion
 - Variable motion
- Plantarflexion stop/Dorsiflexion assist

D>

- Drop foot
- Peripheral vascular disease
- Distal sensory impairment
- Edema
- Volumetric changes
- Stable Charcot foot

CROW BOOT

Charcot Restraint Orthotic Walker

Design

- Total contact custom-made
- Clam shell design
- Molded foam inner boot

- Active Charcot foot
- Diabetes
- Chronic wound care/ulcerations
- Arthritis
- Degenerative joint diesase

POSTERIOR LEAF SPRING AFO

Design

- Custom-made to patient model
- Intimately fits patients anatomy
- Provides dorsiflexion assist during swing phase
- Fabricated out of different thicknesses of plastics or carbon fibers
- DX
 - Drop foot
 - Stroke
 - Multiple sclerosis
 - Peroneal palsy

SEMI-SOLID AFO

Design

- Custom-made with trimlines just posterior
 - to medial and lateral malleoli
- Adds additional support/stability
- Allows some ankle motion in AFO

- Drop foot
- CMT
- CVA
- Spinal cord injury
- Muscular dystrophy
- MS
- Low extremity weakness/instability

SOLID ANKLE AFO

Design

- Trimlines anterior to malleoli
- Provides maximum medial/lateral and dorsi/ plantar support
- Available with various foot plate designs
 - Medial and lateral support flanges
 - Soft foam lined

• DX

- Medial lateral instabilities
- Plantar flexion/dorsiflexion muscular weakness/imbalance
- Varus/valgus instabilities
- Mild knee instabilities
- CVA, MS, CMT, spinal cord injury
- Plantar flexion tightness
- Hypertonicity

ARTICULATED AFO

Design

- Custom-made to patient model
- Ankle joints allow for
 - Full ROM/Variable ROM
 - Dorsi assist/Plantar flexion stop
- Numerous ankle joints and foot plate designs
- Available in different plastics, carbon fiber design

- Plantar flexion/dorsiflexion muscular weakness/imbalance
- Varus/valgus instabilities
- Mild knee instabilities
- CVA, MS, CMT, spinal cord injury

FNMES (WALKAIDE)

Functional Neuromuscular Electrical Nerve Stimulation

Design

- Electrical impulse dorsiflexes patients foot during swing phase
- Assists with neural plasticity
- Minimizes the affects from disuse atrophy

DX

- Drop foot
- Upper motor neuron injuries
 - Stroke
 - Multiple sclerosis
 - Cerebal palsy
 - Head trauma

PATELLAR TENDON BEARING ORTHOSIS

Design

- Provides circumferential compression aiding in reducing axial loading
- Numerous designs

- Tibia and fibula fractures
- Non-union
- Mal-union
- Chronic wound care and ulcers

TIBIAL FRACTURE ORTHOSIS

Design

- Bivalve design for total contact and circumferential compression
- Aids in reduction of axial loading and maintaining anatomical alignment of the injured site

DX

- Tibia and fibular fractures
- Non-unions
- Mal-unions

FEMORAL FRACTURE ORTHOSIS

Design

- Aid in weight distribution and maintaining rotational control
- Available in various style knee and ankle joints
- Removable design allows for inspection

- Femoral fracture
- Pain management

CONTRACTURE AFO

Design

- Tone reducing foot plate
- Static or dynamic capabilities for conservative management for spasticity
- Dynamic component minimizes skin breakdown
- Soft foam lining prevents skin breakdown
- Improves
 - Muscle length
 - Flexibility
 - Balance
 - Correction of postural deformities

CONTRACTURE KAFO

Design

- Tone reducing foot plate
- Static or dynamic capabilities for conservative management for spasticity
- Provides stretch control across knee and ankle complex
- Dynamic component minimizes skin breakdown
- Soft foam lined preventing skin breakdown
- Improves
 - Muscle length
 - Flexibility
 - Balance
 - Correction of postural deformities

CONTRACTURE KNEE ORTHOSIS

Design

- Low load prolonged stretch across knee
- Flexion and extension assist
- Rigid lightweight frame
- Machine washable breathable liner

DX

- Joint contracture
- Knee tightness

KNEE IMMOBILIZER

Design

- Contoured posterior, medial and lateral stays
- Comfortable wide elastic straps
- Variable lengths available

- Knee instability
- Post operatively
- Fractures
- Pain management

RANGE-OF-MOTION KNEE ORTHOSIS

- Design
 - Incremental range of motion control
 - Buckles allow ease of donning/doffing
 - Reduced foam coverage for increased comfort and "cooler" fit
 - Polycentric knee range 0-120 deg
- DX
 - Post operative knee stability
 - Pain management

PATELLAR STABILIZING KNEE ORTHOSIS

- Design
 - Proximal and distal straps
 - Medial and lateral polycentric hinges
 - Lateral buttress for patellar stabilization
 - DX
 - Patellofemoral dysfunction
 - Mild medial/lateral instability

PREFABRICATED FRAMED KNEE ORTHOSIS

Design

- Aluminum, lightweight, rigid frame
- Polycentric hinges
- Condyle pads

DX

- Moderate to severe ACL, MCL, LCL instabilities
- Low impact patient

CUSTOM FRAMED KNEE ORTHOSIS

Design

- Ultra lightweight construction
- Very durable
- Low profile
- Patients whose anatomy doesn't fit in prefab measurements
- High impact patients
- Active people

DX

Moderate to severe ACL, MCL, LCL instabilities/ injuries

PREFABRICATED OFFLOADING KNEE ORTHOSIS

Design

- Can offload medial or lateral compartment
- Light weight aluminum frame
- 3-point loading system reduces degenerative knee joint compression
- Telescoping condyle pad allows for patient to adjust according to activity

DX

- Unicompartmental knee osteoarthritis

CUSTOM OFFLOADING KNEE ORTHOSIS

Design

- Custom-made to model of patients anatomy
- Carbon fiber frame
- Telescoping hinge
- Patient anatomy does not come in prefab sizing
- High activity patients

DX

- Moderate to severe osteoarthritis

SINGLE UPRIGHT KNEE ORTHOSIS

Design

- Low profile
- Cosmetic
- Patients that use brace when at work
 - Professional atmosphere
- Obese patients
 - When brace would rub on contralateral limb
- Custom or prefabricated options

KAFO

Knee-Ankle-Foot Orthosis

- Design
 - Various joints available
 - Fabricated out of different materials
- DX
 - Providing stability to knee and/or foot
 - Functional assist
 - Rigid support to anatomical structure
 - Therapeutic aid
 - Immobilization

STANCE CONTROL KAFO

Design

- Cutting edge KAFO technology
- Allows free swing with orthotic intervention provided during stance phase
- More natural gait
- Decreased patient energy expenditure
- Minimized effects of disuse atrophy on skeletal muscles
- Various designs and technologies available

HIP ORTHOSIS

Design

- Velcro closure
- Washable hypoallergenic lining
- Fully adjustable hip joint

- Hip Fracture
- Post operative surgery
- Hip pain
- Knee alignment

HKAFO

Hip-Knee-Ankle-Foot Orthosis

Design

- Provides maximum stability at the hip knee ankle foot complex
- Can be fabricated from plastics, carbon composites, hybrid variations, leather and metal.
- Various styles of hip, knee, ankle joints available per patient presentation

RGO

Reciprocating Gait Orthosis

Design

- Allows for reciprocal ambulation
- Hands free balance and support
- Dynamic hip stretching
- Various styles
- Growth extension available for pediatrics

- Muscular imbalance/weakness
- Paralysis
- Spinal cord injury
- Spina bifida
- Myelomeningocele

PEDIATRICS

Orthosis

Page

Cranial Remolding Orthosis	50
Scoliosis (Boston Style)	50
Nocturnal Scoliosis (Charleston Style)	51
Soft Scoliosis Orthisis	51
Milwaukee Brace	52
RGO	52
HKAFO	53
KAFO	53
Hip Abduction Orthosis	54
Hip Abduction Orthosis-Infant	54
S.W.A.S.H	55
Pavlik Harness	55
2 Stage AFO	56
Articulated AFO	56
Solid Ankle AFO	57
Semi-Solid AFO	57
Dynamic AFO	58
SMO	58
Walking Boot	59
UCBL's	59
Functional Foot Orthotics	60
Dennis Brown Bar	60
Extra Depth Shoes	61

ORTHOTICS PEDIATRIC ORTHOSES

CRANIAL REMODELING ORTHOSIS

- Design
 - Custom-made to a patient model
 - Worn 23 hrs a day for approx 3-6 months
 - Follow up care ensures that appropriate modifications are made as baby develops
- DX
 - Deformational
 - Plagiocephaly
 - Brachycephaly
 - Scaphocephaly
 - Post-operatively

SCOLIOSIS (BOSTON STYLE)

- Design
 - Custom-made to patient model
 - Rigid plastic shell with soft foam liner
 - Velcro closure tor maximum abdominal compression and biomechanical control
 - Counter force re-directional pads
- DX
 - Idiopathic scoliosis

PEDIATRIC ORTHOSES

NOCTURNAL SCOLIOSIS (CHARLESTON STYLE)

Design

- Custom-made to patient model
- Rigid plastic shell with soft liner
- Brace overcorrects curve worn only at night
- Soft hypoallergenic design

DX

- Idiopathic scoliosis

SOFT SCOLIOSIS ORTHOSIS

Design

- Custom-made to patient model
- Semi-rigid foam exterior
- Soft hypoallergenic lined
- Closed celled foam doesn't absorb moisture

DX

- Idiopathic scoliosis

MILWAUKEE BRACE

- Design
 - Rigid plastic shell with soft lining
 - Counter-force redirectional pads
 - Metal super structure with neck ring
- DX
 - Idiopathic scoliosis
 - Cervical and high thoracic involvement
 - Kyphosis management

RGO

Reciprocating gait orthosis

- Design
 - Allows for reciprocal ambulation
 - Hands free balance and support
 - Dynamic hip stretching
 - Various styles
 - Growth extension available for pediatrics
- D>
 - Muscular imbalance/weakness
 - Paralysis
 - Spinal cord injury
 - Spina bifida
 - Myelomeningocele

ORTHOTICS

PEDIATRIC ORTHOSES

HKAFO

Hip-Knee-Ankle-Foot Orthosis

Design

- Provides maximum stability at the hip knee ankle foot complex
- Can be fabricated from plastics, carbon composites, hybrid variations, leather and metal.
- Various styles of hip, knee, ankle joints available per patient presentation

KAFO

Knee-Ankle-Foot Orthosis

Design

- Various joints available
- Fabricated out of different materials

- Providing stability to knee and/or foot
- Functional assist
- Rigid support to anatomical structure
- Therapeutic aid
- Immobilization

HIP ABDUCTION ORTHOSIS

Design

- Rigid pelvic and thigh section
- Soft lined material
- Hip joint options include
 - Variable
 - Static
 - Free range of motion
 - Adduction/Abduction
 - Flexion/Extension

DX

- Post operative stabilization
- Soft tissue release
- Osteotomies
- Hip subluxation
- Hip dislocation

HIP ABDUCTION ORTHOSIS - INFANT

Design

- Soft interface prevents skin breakdown
- 90 degrees hip flexion
- 160 degrees abduction
- Closed cell foam

- Congenital hip dysplasia
- Developmental hip dysplasia

ORTHOTICS

PEDIATRIC ORTHOSES

SWASH

Standing Walking And Sitting Hip-Orthosis

Design

- Bilateral thigh cuff and pelvic band
 - Aids in proper positioning of hip/sitting balance
 - Reduces subluxation/dislocation
 Prevention of scissoring gait pattern

•

- Pre and post operative management of the pediatric hip
- Cerebral palsy
- Spinal cord injury
- Hypertonicity
- Traumatic brain injury
- Stroke

PAVLIK HARNESS

Design

- Strapping design allows for variable hip flexion and abduction positioning
- Soft interface to avoid skin breakdown
- Available in 0-9 months of age

- Congenital hip dysplasia
- Developmental hip dysplasia

PEDIATRIC ORTHOSES

2 STAGE AFO

Design

- Removable flexible inner boot with rigid outer shell
- Various footplate configurations
- Ideal for people with plantarflexion contractures and hypertonicity

DX

- Medial and lateral instabilities
- Neuromuscular and neuromuscular imbalance
- Cerebral palsy
- Spina bifida
- Muscular dystorphy
- Ligamentous laxity
- Dorsi and plantar flexion weakness

ARTICULATED AFO

Design

- Bilateral ankle joints allow for
 - Full ROM/variable ROM
 - Dorsi assist/plantar flexion stop
- Numerous ankle joints and foot plate designs
- Available in different plastics, carbon fiber design

- Medial lateral instabilities
- Plantar flexion/dorsiflexion muscular weakness/imbalance
- Varus/valgus instabilities
- Mild knee instabilities
- CVA, MS, CMT, spinal cord injury,
- Plantar flexion tightness

PEDIATRIC ORTHOSES

SOLID ANKLE AFO

Design

- Trimlines anterior to malleoli
- Provides maximum medial/lateral and dorsi/plantar support
- Available with various foot plate designs
 - Medial and lateral support flanges
 - Soft foam lined

DX

- Medial lateral instabilities
- Plantar flexion/dorsiflexion muscular weakness/imbalance
- Varus/valgus instabilities
- Mild knee instabilities
- CVA, MS, CMT, spinal cord injury,
- Plantar flexion tightness
- Hypertonicity

SEMI-SOLID AFO

Design

- Custom-made with trimlines just posterior to medial and lateral malleoli
- Adds additional support/stability
- Allows some ankle motion in AFO

- Drop foot
- CMT
- CVA
- Spinal cord injury
- Muscular dystrophy
- Multiple sclerosis
- Low extremity weakness/instability

ORTHOTICS

PEDIATRIC ORTHOSES

DYNAMIC AFO

Design

- Aids in controlling
 - Hyperpronation
 - Supination
- Tone reducing foot plate option
- Assists in controlling medial/lateral ankle instability

DX

- Neurological and neuromusclular imbalance
- Cerebral palsy
- Spina bifida
- Muscular dystrophiesLigamentous laxity
- Calcaneal inversion/eversion
- Severe pes planus
- Hyperpronation/supination

SMO

Supramalleolar orthosis

Design

- Assists with medal/lateral ankle instability
- Aids in controlling hyperpronation/ supination
- Provides hind and forefoot control during gait

- Neurological and neuromusclular imbalance
- Cerebral palsy
- Ligamentous laxity
- Calcaneal inversion/eversion
- Severe pes planus
- Hyperpronation/supination

ORTHOTICS

PEDIATRIC ORTHOSES

WALKING BOOT

Design

- Provides ankle and foot immobilization
- Plastic or aluminum uprights
- Solid or controlled ROM joints
- Pneumatic or static options

DX

- Stable Fx
- Post-op management
- Soft tissue injury (grade 2 or 3 sprain)

UCBL

University California-Berkley Laboratories Orthosis

Design

- Semi-rigid orthosis encompassing medial and lateral borders of calcaneous
- Usually fabricated from plastics
- Custom made to a patient model
- Fabricated in
 - Non
 - Semi
- Full weight bearing positions

- Hyper-pronation
- Hypotonic patient
- Posterior tibial tendonitis dysfunction
- Navicular accessory
- Midfoot collapse

FUNCTIONAL FOOT ORTHOTICS

Design

- Fabricated in non, semi, and full weight bearing positions to achieve neutral or functional alignment (subtalar neutral alignment)
- Custom made to patient models
 - Multidensity
 - Rigid
 - Semi-rigid construction
- Various materials available

DX

- Biomechanical insufficiencies
- Hyperpronation/supination
- Calcaneal inversion/eversion

DENNIS BROWN BAR

- Design
 - Provides correction for
 - Rotational
 - Torsional
 - Angular deformities
- DX
 - Club foot/feet
 - Tibial torsion
 - Congential deformity

PEDIATRIC ORTHOSES

EXTRA DEPTH SHOES

Design

- Wide, low, blucher style openings
- Ease in donn/doffing
- Extra depth toe-box
- Triple layer removable inserts
- Measure for length, width and depth
- Casts taken semi-weight bearing for

custom

- Accommodative shoes for orthotic designs
 - UCBL
 - AFO
 - KAFO
 - Custom FO's

UPPER EXTREMITY ORTHOTICS

Orthosis	Page
----------	------

Wrist/Hand Orthoses
Cock-up Splint64
Custom Wrist-Hand Orthosis64
Thumb Spica Splint65
Resting Hand Splint65
Dynamic Hand Splint66
Elbow Orthoses
Tennis Elbow Strap66
Elbow Pad67
Range-Of-Motion Orthosis67
Shoulder Orthosis/Miscellaneous
Clavicle Strap68
Arm Sling68
Abduction Sling69
Fracture Orthoses
Wrist-Hand Fracture Orthosis69
Ulnar/Radial Fracture Orthosis70
Elbow-Wrist-Hand Fracture Orthosis70
Humeral Fracture Orthosis71
Contracture Orthoses
Wrist-Hand Contracture Ortosis71
Elbow Contracture Orthosis72

COCK-UP SPLINT

Design

- Rigid moldable stay to reduce unwanted flexion and extension
- Rigid removable stays
- Velcro closure

DX

- Carpal tunnel syndrome
- Tendonitis
- Wrist strain/sprain

CUSTOM WRIST HAND ORTHOSIS

Design

- Heat moldable material
- Total contact support
- Boa technology closure

- Carpal tunnel syndrome
- Sprains, strains
- Fractures

THUMB SPICA SPLINT

Design

- One piece semi rigid design incorporates thumb for increased stability and immobilization
- Materials include
 - Canvas
 - Neoprene
 - Plastic

DX

- Carpal tunnel syndrome
- Tendonitis
- Wrist sprain/strain
- Post-fracture management

RESTING HAND SPLINT

Design

- Maintains wrist, hand and fingers in functional position
- Moldable plastic shell
- Soft synthetic washable lambs wool liner

- Pain management
- Stroke
- Paralysis
- Post-operative management
- Spasticity

DYNAMIC HAND SPLINT

- Design
 - Therapeutic aid
 - Graded Range of motion stays
 - Assists with neural plasticity through dynamic motion
- DX
 - Post- op management
 - CVA
 - Paralysis
 - Paresis
 - Brachial plexus injuries

TENNIS ELBOW STRAP

- Design
 - Wrap around splint
 - Directional padding
 - Velcro closure
- DX
 - Medial or lateral epicondylitis

ELBOW PAD

Design

 Elastic elbow sleeve with foam padding to prevent excessive pressure over bony prominence

DX

- Ulnar neuropathy

RANGE-OF-MOTION ELBOW ORTHOSIS

Design

- Rigid exterior shell
- Soft removable Variable ROM controlling flexion and extension
- Optional wrist and hand extension available
- Shoulder harness with adjustable straps for added comfort and suspension

- Elbow dislocations
- Post-operative management
- Fracture management
- Contracture management

CLAVICLE STRAP

- Design
 - Foam padded shoulder straps
 - Increased shoulder retraction
- DX
 - Clavicle Fracture
 - Pain management
 - Postural support

ARM SLING

- Design
 - Canvas material
 - Shoulder harness
 - Adjustable straps
- DX
 - Immobilization for mild strains/sprains
 - Fracture management
 - Shoulder injuries
 - Post operative management

ABDUCTION SLING

Design

- Custom fit to patient
- Variable degrees of abduction
- Maintains upper extremity in neutral position to aid in healing

- Rotator cuff repairs
- Shoulder capsule injury
- Glenohumeral dislocation/subluxation
- Soft tissue injury

WRIST HAND FRACTURE ORTHOSIS

- Design
 - Custom-made or prefabricated
 - Immobilization of wrist and hand
 - Soft interface

- Wrist and hand fractures
- Post-operative or post-cas stabilization

ULNAR/RADIAL FRACTURE ORTHOSIS

- Design
 - Custom-made or prefabricated
 - Plastic semi-rigid design
 - Total contact with circumferential compression
 - Soft interface
- DX
 - Mild ulnar and radial fractures
 - Post-operative stabilization
 - Post-cast stabilization

ELBOW-WRIST-HAND FRACTURE ORTHOSIS

- Design
 - Plastic semi-rigid design
 - Unilateral or bilateral elbow joints
 - Joints can be
 - Locked
 - Free motion
 - Variable motion
 - Soft interface
 - Numerous design options
- DX
 - Distal humeral fractures
 - Proximal radial and ulnar fractures
 - Post-operative management
 - Post-cast stabilization

ORTHOTICS UPPER EXTREMITY ORTHOSES

HUMERAL FRACTURE ORTHOSIS

Design

- Custom-made or prefabricated
- Total contact design
- Circumferential compression for increased stabilization
- Shoulder cap optional
- Soft interface

DX

- Mid-humeral fractures
- Post-operative stabilization
- Post-cast stabilization

WRIST-HAND CONTRACTURE ORTHOSIS

Design

- Positional orthosis with dynamic wrist joint
- Aids in contracture/spasticity management
- Aids in soft tissue release

DX

- Wrist and hand contracture management

ORTHOTICS UPPER EXTREMITY ORTHOSES

ELBOW CONTRACTURE ORTHOSIS

- Design
 - Custom-made or prefabricated
 - Positional orthosis with dynamic elbow ioint
 - Aids in contracture/spasticity management
 - Aids in soft tissue release
 - Variable range of motion joint can be
- DX
 - Elbow contracture management

PROSTHETICS: LOWER EXTREMITY

Ortnosis	Pag
Introduction to Prosthetics Post-Operative Protocols Lower Extremity Prosthetics Program Lower Extremity Functional Classifications	80
Lower Extremity Prosthetic Prescriptions Usually Associated Prescription Terms Specially Prescriptions Terms	
Lower Extremity Prosthetics Types of Prosthetic Feet	86
Types of Prosthetic Knees	
Immediate Post-Operative Care	
Amputation Level: Partial Foot	
Amputation Level: Symes	88
Amputation Level: Transtibial (BK)	
Amputation Level: Transfemoral (AK)	89
Amoutation Level: Hip Disarticulation	89

PROSTHETICS INTRODUCTION

INTRODUCTION TO PROSTHETICS

A Certified Prosthetist (CP) or Certified Prosthetist/Orthotist (CPO) provides clinical care to patients with amputated or congenitally absent limbs. They design, fabricate and fit prosthetic devices (artificial limbs). These devices replicate the function and appearance of a limb so that patients can resume activities of daily living and work.

Significant developments in the last twenty years have dramatically advanced the field of prosthetics. Improvements in material science have provided stronger, more durable, light weight materials (composites, titanium, carbon fibers) that enable users to function and ambulate with greater ease and less stress. Soft materials that absorb axial loading and shearing forces are commonly used to enhance the fit and feel of the prosthesis. New designs in feet, knees, hands, arms, sockets and interface liners have brought us closer to the goal of completely restoring lost function and appearance.

The future of prosthetic lies in microprocessors integrated into prostheses to assist with specific functions and computers to diagnose and design. The prosthetic profession is moving toward evidence-based practice with clinical protocols based on scientific research.

Advanced technology does not guarantee optimal rehabilitation outcomes. The prosthetist's role is to provide each patient with an appropriate prosthesis and to deliver ongoing care to ensure optimal fit and function. Every patient has different functional and lifestyle requirements that must be met for that person to regain functional independence. The prosthetist incorporates expertise in anatomy, socket design, materials, components, gain analysis, and biomechanics in their evaluation of the patient to design the most appropriate prosthetic system for each patient. Patients have the best chance for successful rehabilitation when the prosthetist works closely with doctors, therapists, social workers, and other professionals, as well as the patients family and insurance company.

Post-operative Protocols: The physician will generally determine which prosthetic treatment protocol is utilized following surgery. These commonly include:

Rigid Dressing (RD): Used to prevent knee flexion contracture, manage edema, and protect the surgical site. A second RD is usually applied 7-10 days following surgery as part of protocol.

Removable Rigid Dressing (RRD): Used for the same purpose as the RD, with added benefit of being able to remove the dressing and monitor the surgical site as needed. Prosthetic socks of varying thickness are used to ensure continued fit as the edema in the residual limb decreases.

Immediate Post-operative Prosthesis (IPOP): A combination of a RRD with the addition of a pylon and foot or hand system. The IPOP allows the patient to ambulate with controlled partial weight-bearing shortly after surgery. Applied early and correctly, an IPOP provides protection, volume management and early function, while preparing the residual limb for prosthetic wear and/or ambulation. This protocol is more common in a hospital or rehab facility because it requires that the patient be closely monitored by a physical therapist and rehab nurse.

Compression Therapy: The use of a compressive wrap or sock shrinker to control edema when none of the previous treatment protocols are appropriate. Compression therapy is often utilized as part of the previous treatment protocols.

Preparatory Prosthesis: Following the successful use of any of the listed post-operative processes, the physician will order the fitting of a preparatory prosthesis. The preparatory prosthesis is designed to allow the patient to begin rehabilitation before the residual limb has completely stabilized in size. Its design allows the prosthetist to continuously adjust the prosthesis to mirror the progress achieved by the amputee as the patient regains strength and confidence.

A preparatory prosthesis can be used as soon as six weeks post-surgically and throughout rehabilitation until the residual limb edema has stabilized. Should larger reduction in limb volume occur, the modular design allows the socket segment to be replaced and refit to ensure optimal fit of the prosthesis.

Definitive Prosthesis: The design and fitting of this prosthesis is a reflection of all the rehabilitation processes that have previously occurred. The prosthetist considers the strength, motivation, functional requirements, and daily needs of the user when recommending the design, components and materials utilized for each prosthesis. The goal of the definitive prosthesis is to allow the patient to fulfill the requirements and functions unique to his or her daily activities.

All definitive prostheses are custom-made utilizing a mold of the remaining residual limb. The mold may be generated from a plaster cast impression or using Computer Automated Design (CAD). After the mold is created, a series of diagnostic test sockets are often set up for trial as part of the dynamic alignment process.

Once the alignment and proper fit of the prosthesis are determined, the definitive prosthesis is fabricated and delivered to the patient for use. Cosmetic enhancements (shaped foam covers and latex skins) are usually delayed until all follow-up adjustments have been made. Regular long-term follow-up is essential to ensure optimal prosthetic rehabilitation for the patient.

Phone: (608) 257-4256 Fax: (608) 257-7220

PROSTHETICS INTRODUCTION

INTRODUCTION TO PROSTHETICS

Walkabout Lower Extremity Prosthetics Program

The Walkabout lower extremity prosthetic program is comprised of practitioners certified and specifically trained in all aspects of lower extremity prosthetics. We use state-of-the-art prosthetic components such as microprocessor knees and feet, and a variety of different socket designs specifically selected based on patient presentation (goals, anatomy, ROM, MMT). When we evaluate the patient for a new prosthesis, we perform a thorough analysis that evaluates the patient's particular circumstances in terms of lifestyle, health, capabilities and goals.

Lower Extremity Functional Classifications

Prosthetic components and design elements are selected based on the patient's functional level or "K" levels 0 to 4. Functional level is determined by the reasonable expectations of the Certified Prosthetist, Physical and Occupational Therapists, and the referring Physician. Considering factors include, but are not limited to:

- The patient's past history (including prior prosthetic use (if applicable)
- The patient's current and potential abilities and condition including the status of the residual limb and the nature of other medical problems

Lower Extremity Functional Classifications Level (Cont'd)

 The patient's desire to ambulate with a prosthesis Clinical assessments of a patient's functional level are based on these classification levels:

Level 0: Does not have the ability or potential to ambulate or transfer safely without assistance and a prosthesis does not enhance quality of life or mobility.

Level 1: Has the ability or potential to use a prosthesis for transfers or ambulation on level surfaces at a fixed cadence. Typical of the limited and unlimited household ambulator.

Level 2: Has the ability or potential for ambulation with the ability to traverse low level environmental barriers such as curbs, stairs or uneven surfaces. Typical of the limited community ambulator.

Level 3: Has the ability or potential for ambulation with variable cadence. Typical of the community ambulator who has the ability to traverse most environmental barriers and may have vocational, therapeutic or exercise activity that demands prosthetic utilization beyond simple locomotion.

Lower Extremity Functional Classifications Level (Cont'd)

Level 4: Has the ability or potential for prosthetic ambulation that exceeds basic ambulation skills, exhibiting in high impact, stress or energy levels. Typical of the prosthetic demands of a child, active adult or athlete.

Note: Bilateral amputees often cannot be strictly bound by	
functional level classifications.	

The prescription and design of a prosthesis is based on the patient's level of amputation, functional level classification (KO – K4), and stage of healing (preparatory or definitive). Multiple descriptors are used to specify all the required elements of an appropriate prosthesis specific to each amputee. The most important part of any prosthesis is a comfortable socket.

LOWER EXTREMITY PROSTHETICS

LOWER EXTREMITY PROSTHETIC PRESCRIPTIONS

Usually Associated Prescription Terms

- Test socket(s) used to diagnose socket fit before final fabrication
- Total contact technique for preparing the socket to prevent skin problems
- Alignable system allows for alignment adjustments and the interchanging of components
- Ultra-light material increases material strength without adding weight
- Acrylic socket allows socket to be adjusted after fitting
- Flexible inner socket/external frame- permits muscle movement within the socket
- Suction socket provides enhanced suspension of prosthesis

LOWER EXTREMITY PROSTHETIC PRESCRIPTIONS

Usually Associated Prescription Terms Continued

- Gel socket inserts (liner) locking or non-locking. Provides comfort, skin protection, suspension
- Locking mechanism or suspension sleeve provides suspension
- Foot based on the patient's potential functional level and expected activities
 - Knee based on the patient's potential functional level and expected activities
 - Custom shaped cover cosmesis and protection of internal componentry
 - Flexible outer surface cover (skin) provides moisture protection
 - Sheaths used by the patient to make fine adjustments to prosthetic fit
 - Socks used by the patient to make adjustments to socket

LOWER EXTREMITY PROSTHETICS

LOWER EXTREMITY PROSTHETIC PRESCRIPTIONS

Usually Associated Prescription Terms Continued

- Shrinkers - Edema control, limb shaping, phantom pain control

Specialty Prescription Terms

- Microprocessor control improves stability and function
- Replacement socket required for changes in the size and shape of residual limb that can't be achieved by adding socks
- Elevated vacuum socket optimal suspension socket fit and reduced perspiration
- Axial rotation unit allows lower limb to rotate at the knee allowing more natural gait, less strain on residuum
- Repairs regular follow-up necessary to ensure optimal function and fit

TYPES OF PROSTHETIC FEET

- Solid ankle cushion heel (SACH)
- Flexible keel
- Single axis
- Multi axial
- Dynamic response
- Energy-storing
- Combination of above

TYPES OF PROSTHETIC KNEES

- Manual locking
- Stance/weight-activated locking
- Polycentric
- Pneumatic
- Hydraulic
- Microprocessor
- Combination of the above

PROSTHETICS

LOWER EXTREMITY PROSTHETICS

IMMEDIATE POST-OPERATIVE CARE

- Removable rigid dressing
 - Protect the patient from damaging limb due to falls
 - Prevention of flexion contractures
 - Aids in volume reduction and shaping the limb

AMPUTATION LEVEL: PARTIAL FOOT

- Design
 - Type of amputation can have dramatic effect on gait due to loss of lever arm (toes and metatarsals)
 - Variety of prosthesis may be used depending on level of amputation

AMPUTATION LEVELS: SYMES

Design

- Amputation level is an ankle disarticulation
- Prosthetic socket usually extends to the knee due to increased forces on the limb
- A low profile foot is used to match the height of the opposite side

AMPUTATION LEVELS: TRANSTIBIAL

Design

- Numerous styles and configurations available
- Considerations of selection include
 - Diagnosis
 - Past medical history
 - Shape
 - Length of residuum
 - Activity level
 - Surgical issues
 - Cognition
 - Goals of the patient

AMPUTATION LEVELS: TRANSFEMORAL (AK)

- Transfemoral or above knee (AK)
 - Numerous styles and configurations available
 - Considerations of selection include
 - Diagnosis
 - Past medical history
 - Shape
 - Length of residuum
 - Activity level
 - Surgical issues
 - Cognition
 - Goals of the patient

AMPUTATION LEVELS: HIP DISARTICULATION

- Hip disarticulation/ hemipelvectomy
 - Socket is designed around a total contact shell
 - Uses contralateral side for suspension and stabilization
 - Numerous feet and knees available to provide individual with appropriate prosthesis that will maximize their potential functional ability

PROSTHETICS: UPPER EXTREMITY

<u>Orthosis</u> <u>Page</u>

Upper Extremity Prosthetic Options	
Oppositional (Passive)	92
Cable-Operated (Body-Powered)	
External-Powered	
Hybrid System	
Activity Specific	94
Upper Extremity Terminal Devices	
Passive Hand	94
Mechanical Hand	95
Mechanical Hook	95
Electric Hand	96
Electric Hook	96
Upper Extremity Amputation Levels	
Partial Hand	97
Wrist Disarticulation	97
Transradial	98
Elbow Disarticulation	98
Transhumeral	
Shoulder Disarticulation	99

UPPER EXTREMITY PROSTHETIC OPTIONS

Oppositional (Passive)

- Devices meant to oppose the sound hand/or remaining digits of partial hand
- Made for specific tasks or for high definition cosmetics
- Does not provide active prehension

UPPER EXTREMITY PROSTHETIC OPTIONS

• Cable-Operated (Body-Powered)

- Uses a cable and harness for control of terminal device and suspension of the prosthesis
- Can be made very heavy duty for rough environments
- A minimum amount of range of motion and strength are required for use
- Easily maintained
- A minimum amount of occupational therapy is required

PROSTHETICS

UPPER EXTREMITY PROSTHETICS

UPPER EXTREMITY PROSTHETIC OPTIONS

External-Powered

- Uses a battery to operate a terminal device
- Most often controlled by EMG signals on residual limb
- Not recommended around certain environments or for rough activities
- May require more maintenance
- Increased grip force compared to other systems

UPPER EXTREMITY PROSTHETIC OPTIONS

Hybrid System

- Combines the technology of above systems
- Heavier duty and lighter weight than pure electric system
- May require harness for suspension
- Lower amounts of body motion and energy are required

UPPER EXTREMITY PROSTHETIC OPTIONS

Activity Specific

- Specialty terminal device
- Designed for specific activity
- Can attach to existing device
- Wide variety of tools and adaptations available depending on activities of daily living needs

UPPER EXTREMITY TERMINAL DEVICES

Passive Hand

- Meant to provide the appearance of sound hand
- Does not provide prehension
- Can be covered with a highdefinition glove for maximum cosmetics

UPPER EXTREMITY TERMINAL DEVICES

- Mechanical Hand
 - Used on cable operative devices
 - Moderate durability
 - Provides appearance of hand
 - Moderate function

UPPER EXTREMITY TERMINAL DEVICES

- Mechanical Hook
 - Used on cable-operated devices
 - Highest durability for prosthetic terminal devices
 - Many different shapes sizes
 - Poor cosmetics

UPPER EXTREMITY TERMINAL DEVICES

- Electric Hand
 - Used on external powered devices
 - Heavier than mechanical
 - Provides grip force of over
 20 lbs with minimal effort
 - Very natural appearance

UPPER EXTREMITY TERMINAL DEVICES

- Electric Hook
 - Used on external-powered devices
 - Very high grip strength
 - Some over 40lbs
 - Moderate durability
 - Some are resistant to water/dirt

UPPER EXTREMITY AMPUTATION LEVELS

Partial Hand

- Cosmetic restorations are very lifelike and well-accepted
- Wide variety of oppositional devices
- Advancements with body-powered and external- powered devices provide enhanced grasping patterns

UPPER EXTREMITY AMPUTATION LEVELS

Wrist Disarticulation

- Various socket designs used
- Various suspension available
 - Suction
 - Gel liner with pin
 - Harness
- Length of limb determines components used to prevent length discrepancy

UPPER EXTREMITY AMPUTATION LEVELS

Transradial

- AKA Below elbow(BE)
- Various socket designs used
- Based on length of residual limb
- Various suspension available
 - Suction
 - Gel liner with pin
 - Harness
- Numerous terminal devices available

UPPER EXTREMITY AMPUTATION LEVELS

• Elbow Disarticulation

- Provides longer lever-arm for axial loading and control
- Outside hinges often used
 - Assist with flexion
 - Make prosthesis more bulky
- Various suspension available
 - Suction
 - Gel liner with pin
 - Harness
- Components
 - Reduce cosmesis
 - Limit wearing certain clothes

PROSTHETICS

UPPER EXTREMITY PROSTHETICS

UPPER EXTREMITY AMPUTATION LEVELS

- Transhumeral
 - AKA, Above Elbow (AE)
 - Suspension usually achieved by harness
 - Requires more body motion for control

UPPER EXTREMITY AMPUTATION LEVELS

- Shoulder Disarticulation
 - Suspension is achieved through harness
 - Experience and expertise in fitting and attaining appropriate function are key to positive results
 - With addition of a shoulder joint, this level incorporates all the components of transhumeral level

INDICATIONS CROSS REFERENCE

Orthosis Page Ankle 104 Arm 104 Elbow 104 Foot 105 Hand 105 Hip 106 Knee 106 Leg 107 Neck 107 Shoulder 107 Spine/Back 108 Wrist 109

INDICATION CROSS REFERENCE

INDICATIONS CROSS REFERENCE

Anl	kle	
	Contracture	.29, 30, 40
	Fracture	
	Instability31-33	, 27-28, 37
	Sprain	
	Symes Amputation	88
	Tendonitis27, 29	, 31-33, 37
	Weakness	31-38
Arn	n	
	Amputation	92-99
Elbe	ow	
	Amputation	98
	Contacture	67, 72
	Dislocation	67-68
	Epicondylitis	
	Fracture67	, ,
	Hypertension	
	Neuropathy	
	Strain	
	Tendonitis	
	Tightness	
	Ulnar Neuropathy	64-69

INDICATION CROSS REFERENCE

INDICATIONS CROSS REFERENCE

Amputation - Partial Foot	8
Bunion	26, 2
Cellulitis	2
Charcot	26, 28, 3
Foot-Drop	30, 34-3
Fracture	
Heel Spur	26-3
Pes Cavus	2
Pes Planus	26-2
Plantar Fasciitis	26, 3
Prosthetic	86-8

Foot

INDICATIONS CROSS REFERENCE

Hip		
-	Amputation - Hip Disarticulation	89
	Contracture	46-47
	Degenerative Joint	
	Dislocation	
	Dysplasia	46-47, 53-55, 60
	Fracture	
	Post-op	46-47
	•	
Kne	e	
	Amputation - Transtibial (BK)	88
	Arthritis	41-45
	Chondromalacia	42
	Contracture	40-42
	Dislocation	41-45
	Hyperextension	41-46
	Instability	
	Ligament Tear/Strain	
	Osgood Schlatter's	42
	Osteoarthritis	42-45
	Patellofemoral	42
	Post-operative	
	Tondonitits	

INDICATION CROSS REFERENCE

INDICATIONS CROSS REFERENCE

Leg	
Amputation - Transfemoral (AK)	89
Femur Fracture	39, 41-42
Fibular Fracture	
Neuropathy	34-38
Paralysis	
Tibial Fracture	38-39, 41-42
Ulcers	
Neck	
Pain	8-10
Strain	
Torticollis	
Shoulder	
Acromio Sprain	68-69
Amputation	
Arthritis	
Clavicular Fracture	68
Dislocation	68-69
Rotator Cuff Strain	
T 1:4:-	

INDICATIONS CROSS REFERENCE

Spine/Back

Arthritis	13-21
Burst Fractures	12-14, 16-18
Cervical Fracture	8-12
Compression Fracture	11-21
Degenerative Disc Disease	13-21
Herniated Disc	20
Kyphosis	13-15
Laminectomy	13, 16-18, 20-21
Pain	12-21
Sciatica	17-21
Scoliosis	50-51
SI Dysfunction	19
Spondylosis	13, 16-17
Sprain/Strain	13-14, 17-18, 20-21
Stenosis	8-11, 20-21
Thoracic Fracture	12-18
Spina Bifida	

INDICATION CROSS REFERENCE

INDICATIONS CROSS REFERENCE

Wrist

Amputation	97
Arthritis	
Carpal Tunnel	64-65
DeQuervain's	65
Radial Fracture	64, 69-70
Sprain	64-65, 69
Tendonitis	64-65

Photos provided by:

Trulife

Philadelphia Collar Company

Ossur Inc

Aspen Medical Corp

Orthoamerica

Somi

Bremer Medical

Spinal Technoloies Inc.

Medi Inc.

Hope International

Florida Brace Corp.

Freeman

Saunders Inc.

Spinal Rehab Solutions

Darco

Bledsoe Brace Corp.

Anatomical Concepts

Sweedo

Air Cast

Richie Brace Corp.

Arizona AFO

Allard Inc.

Otto Bock Inc.

Innovative Neurotronics

Ultra Flex

Breg Inc

DJ Ortho

Cascade DAFO

Sure Fit

Southern Prosthetic Supply

Camp Scandinavia

Hosmer

ARC

Jodel

College Park

Ohio Willow wood

Our Locations Include:

Madison Location

2008 Fish Hatchery Road Madison, WI 53713

Baraboo Location

St. Clare Hospital & Health
Physical Therapy Department
707 14th Street
Baraboo, WI 53913

Beloit Location

Beloit Occupational & Sports Medicine Center 1650 Lee Lane Beloit, WI 53511

Please call (608-257-4256) to set up appointments.

Phone: (608) 257-4256 Fax: (608) 257-7220 **WWW.ALJAN.COM**